Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Healthcare (Basel) ; 9(11)2021 Oct 20.
Article in English | MEDLINE | ID: covidwho-1502402

ABSTRACT

Phenylketonuria (PKU) and Hyperphenylalaninemia (HPA) are inborn errors of metabolism (IEM) due to mutations in the PAH gene resulting in increased blood phenylalanine (Phe) concentrations. Depending on the Phe levels, a lifelong dietary intervention may be needed. During the COVID-19 pandemic, finding new strategies to ensure follow-up and metabolic control for such patients became mandatory and telehealth was identified as the most eligible tool to provide care and assistance beyond barriers. The aim of this study was to evaluate how telehealth use may have impacted disease follow-ups. Seven hundred and fifty-five patients affected by PKU/HPA in follow-ups at the Clinical Department of Pediatrics (San Paolo Hospital, ASST Santi Paolo e Carlo, University of Milan, Italy) were included in this study. The data regarding the used telehealth model, type of performed consultations and patients' perspectives were retrospectively collected and analyzed after a one-year experience of implemented follow-ups. The results demonstrated that telehealth seemed to be a useful tool to improve the adherence to treatment and that it could guarantee continuous assistance and care beyond the surrounding epidemiological status. Patients expressed great satisfaction with the offered services and requested that they were implemented in standards of care on a long-term basis. Our results suggested the implementation of telehealth in the management guidelines for PKU/HPA patients.

2.
Mol Genet Metab Rep ; 27: 100759, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1202020

ABSTRACT

BACKGROUND: COVID19 pandemic urged the need to take severe measures for reducing the epidemic spread. Lockdowns were imposed throughout countries and even Inborn errors of metabolism (IEMs) affected patients had to face it and adapt, with management strategies changes coming along. Phenylketonuria (PKU) is an inborn error of phenylalanine (Phe) metabolism causing, when not treated, blood Phe increases and consequent central nervous system (CNS) damage. Dietary intervention is the main recognized treatment and must be maintained long-life, however adherence is often suboptimal in adulthood. Aim of this study was to evaluate whether and how the pandemic had impacted PKUs metabolic control and what factors may have played a role as potential modifiers. METHODS: Patients ≥4 yo and in follow-up at our Metabolic Clinic were enrolled in this study, divided into subgroups according to age (GROUP A < 12 yo; GROUP B ≥ 12 yo). Videoconsults were conducted on a minimum monthly basis and collected DBS were studied and compared to previous year same time-period in order to evaluate possible changes. RESULTS: 39% of patients (n = 121) increased the number of performed DBS. "Non-compliant" patients were reduced (11-3%) with a - 14% of patients with mean Phe levels >600 umol/l and a - 8% of patients with 100% DBS above same level. GROUP A maintained substantially unchanged metabolic control among two analyzed time-periods. On the contrary, GROUP B demonstrated significant reductions in mean blood Phe concentrations (p < 0.0001) during the pandemic (mean 454 umol/l, SD ± 252, vs. 556.4 umol/l, SD ± 301). DISCUSSION: COVID19 pandemic strongly impacted people's life with lifestyle habits changing consistently. PKU patients had to adapt their dietary restrictions to the new environment they were exposed to and, if younger patients could have been less exposed (meals strictly according to diet plan independently from setting), adolescent and adults strongly reflected the obligation to stay home by showing better metabolic control. Multiple factors could have played a role in that and the availability of teleconsultancy may have contributed allowing easier connections, but our data demonstrate how the pandemic and the environment can strongly impact PKUs adherence to treatment and how removing distance barriers can ameliorate and optimize metabolic compliance.

SELECTION OF CITATIONS
SEARCH DETAIL